电力电子器件大全及使用方法详解

发布时间:2019-11-06 07:24:36   来源:文档文库   
字号:

1 电力电子器件

主要内容:各种二极管、半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件:GTO、电力MOSFETIGBT,功率集成电路和智能功率模块,电力电子器件的串并联、电力电子器件的保护,电力电子器件的驱动电路。

重点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件。

难点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数。

基本要求:掌握半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,熟练掌握器件的选取原则,掌握典型全控型器件,了解电力电子器件的串并联,了解电力电子器件的保护。

1 电力电子器件概述

(1) 电力电子器件的概念和特征

主电路(main power circuit--电气设备或电力系统中,直接承担电能的变换或控制任务的电路;

电力电子器件(power electronic device--可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件;

广义上电力电子器件可分为电真空器件和半导体器件两类。

两类中,自20世纪50年代以来,真空管仅在频率很高(如微波)的大功率高频电源中还在使用,而电力半导体器件已取代了汞弧整流器(Mercury Arc Rectifier)、闸流管(Thyratron)等电真空器件,成为绝对主力。因此,电力电子器件目前也往往专指电力半导体器件。

电力半导体器件所采用的主要材料仍然是硅。

同处理信息的电子器件相比,电力电子器件的一般特征:

a. 能处理电功率的大小,即承受电压和电流的能力,是最重要的参数;

其处理电功率的能力小至毫瓦级,大至兆瓦级,大多都远大于处理信息的电子器件。

b. 电力电子器件一般都工作在开关状态;

导通时(通态)阻抗很小,接近于短路,管压降接近于零,而电流由外电路决定;

阻断时(断态)阻抗很大,接近于断路,电流几乎为零,而管子两端电压由外电路决定;

电力电子器件的动态特性(也就是开关特性)和参数,也是电力电子器件特性很重要的方面,有些时候甚至上升为第一位的重要问题。

作电路分析时,为简单起见往往用理想开关来代替

c. 实用中,电力电子器件往往需要由信息电子电路来控制。

在主电路和控制电路之间,需要一定的中间电路对控制电路的信号进行放大,这就是电力电子器件的驱动电路

d. 为保证不致于因损耗散发的热量导致器件温度过高而损坏,不仅在器件封装上讲究散热设计,在其工作时一般都要安装散热器。

导通时器件上有一定的通态压降,形成通态损耗

阻断时器件上有微小的断态漏电流流过,形成断态损耗

在器件开通或关断的转换过程中产生开通损耗和关断损耗,总称开关损耗

对某些器件来讲,驱动电路向其注入的功率也是造成器件发热的原因之一

通常电力电子器件的断态漏电流极小,因而通态损耗是器件功率损耗的主要成因

器件开关频率较高时,开关损耗会随之增大而可能成为器件功率损耗的主要因素

(2) 应用电力电子器件的系统组成

电力电子系统:由控制电路、驱动电路和以电力电子器件为核心的主电路组成。

控制电路按系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的通或断,来完成整个系统的功能。

有的电力电子系统中,还需要有检测电路。广义上往往其和驱动电路等主电路之外的电路都归为控制电路,从而粗略地说电力电子系统是由主电路和控制电路组成的。

主电路中的电压和电流一般都较大,而控制电路的元器件只能承受较小的电压和电流,因此在主电路和控制电路连接的路径上,如驱动电路与主电路的连接处,或者驱动电路与控制信号的连接处,以及主电路与检测电路的连接处,一般需要进行电气隔离,而通过其它手段如光、磁等来传递信号。

由于主电路中往往有电压和电流的过冲,而电力电子器件一般比主电路中普通的元器件要昂贵,但承受过电压和过电流的能力却要差一些,因此,在主电路和控制电路中附加一些保护电路,以保证电力电子器件和整个电力电子系统正常可靠运行,也往往是非常必要的。

器件一般有三个端子(或称极),其中两个联结在主电路中,而第三端被称为控制端(或控制极)。器件通断是通过在其控制端和一个主电路端子之间加一定的信号来控制的,这个主电路端子是驱动电路和主电路的公共端,一般是主电路电流流出器件的端子。

(3) 电力电子器件的分类

按照器件能够被控制电路信号所控制的程度,分为以下三类:

a. 半控型器件--通过控制信号可以控制其导通而不能控制其关断

晶闸管(Thyristor)及其大部分派生器件

器件的关断由其在主电路中承受的电压和电流决定

b. 全控型器件--通过控制信号既可控制其导通又可控制其关断,又称自关断器件

是绝缘栅双极晶体管(Insulated-Gate Bipolar Transistor--IGBT

电力场效应晶体管(Power MOSFET,简称为电力MOSFET

门极可关断晶闸管(Gate-Turn-Off Thyristor--GTO

c. 不可控器件--不能用控制信号来控制其通断,因此也就不需要驱动电路

电力二极管(Power Diode

只有两个端子,器件的通和断是由其在主电路中承受的电压和电流决定的

按照驱动电路加在器件控制端和公共端之间信号的性质,分为两类:

电流驱动型--通过从控制端注入或者抽出电流来实现导通或者关断的控制

电压驱动型--仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制

电压驱动型器件实际上是通过加在控制端上的电压在器件的两个主电路端子之间产生可控的电场来改变流过器件的电流大小和通断状态,所以又称为场控器件,或场效应器件

按照器件内部电子和空穴两种载流子参与导电的情况分为三类:

单极型器件--由一种载流子参与导电的器件

双极型器件--由电子和空穴两种载流子参与导电的器件

复合型器件--由单极型器件和双极型器件集成混合而成的器件

2 不可控器件--电力二极管

Power Diode结构和原理简单,工作可靠,自20世纪50年代初期就获得应用

快恢复二极管和肖特基二极管,分别在中、高频整流和逆变,以及低压高频整流的场合,具有不可替代的地位

1 PN结与电力二极管的工作原理

基本结构和工作原理与信息电子电路中的二极管一样

以半导体PN结为基础

由一个面积较大的PN结和两端引线以及封装组成的

从外形上看,主要有螺栓型和平板型两种封装

1-1 电力二极管的外形、结构和电气图形符号

a) 外形 b) 结构 c) 电气图形符号

PN结的反向截止状态,PN结的单向导电性;

PN结的反向击穿:

有雪崩击穿和齐纳击穿两种形式,可能导致热击穿。

PN结的电容效应:

PN结的电荷量随外加电压而变化,呈现电容效应,称为结电容CJ,又称为微分电容。结电容按其产生机制和作用的差别分为势垒电容CB和扩散电容CD

势垒电容只在外加电压变化时才起作用,外加电压频率越高,势垒电容作用越明显。势垒电容的大小与PN结截面积成正比,与阻挡层厚度成反比

而扩散电容仅在正向偏置时起作用。在正向偏置时,当正向电压较低时,势垒电容为主正向电压较高时,扩散电容为结电容主要成分

结电容影响PN结的工作频率,特别是在高速开关的状态下,可能使其单向导电性变差,甚至不能工作,应用时应加以注意。

造成电力二极管和信息电子电路中的普通二极管区别的一些因素:

正向导通时要流过很大的电流,其电流密度较大,因而额外载流子的注入水平较高,电导调制效应不能忽略

引线和焊接电阻的压降等都有明显的影响

承受的电流变化率di/dt较大,因而其引线和器件自身的电感效应也会有较大影响

为了提高反向耐压,其掺杂浓度低也造成正向压降较大

2 电力二极管的基本特性

a 静态特性

主要指其伏安特性

当电力二极管承受的正向电压大到一定值(门槛电压UTO),正向电流才开始明显增加,处于稳定导通状态。与正向电流IF对应的电力二极管两端的电压UF即为其正向电压降。当电力二极管承受反向电压时,只有少子引起的微小而数值恒定的反向漏电流。

b 动态特性

动态特性--因结电容的存在,三种状态之间的转换必然有一个过渡过程,此过程中的电压-电流特性是随时间变化的

开关特性--反映通态和断态之间的转换过程

关断过程:

须经过一段短暂的时间才能重新获得反向阻断能力,进入截止状态

在关断之前有较大的反向电流出现,并伴随有明显的反向电压过冲

(3) 电力二极管的主要参数

a. 正向平均电流IF(AV)

额定电流

--在指定的管壳温度(简称壳温,用TC表示)和散热条件下,其允许流过的最大工频正弦半波电流的平均值

正向平均电流是按照电流的发热效应来定义的,因此使用时应按有效值相等的原则来选取电流定额,并应留有一定的裕量。

当用在频率较高的场合时,开关损耗造成的发热往往不能忽略

当采用反向漏电流较大的电力二极管时,其断态损耗造成的发热效应也不小

b. 正向压降UF

指电力二极管在指定温度下,流过某一指定的稳态正向电流时对应的正向压降

有时参数表中也给出在指定温度下流过某一瞬态正向大电流时器件的最大瞬时正向压降

c. 反向重复峰值电压URRM

指对电力二极管所能重复施加的反向最高峰值电压

通常是其雪崩击穿电压UB2/3

使用时,往往按照电路中电力二极管可能承受的反向最高峰值电压的两倍来选定

d. 最高工作结温TJM

结温是指管芯PN结的平均温度,用TJ表示

最高工作结温是指在PN结不致损坏的前提下所能承受的最高平均温度

TJM通常在125~175ºC范围之内

e. 反向恢复时间trr

trr= td+ tf ,关断过程中,电流降到0起到恢复反响阻断能力止的时间

f. 浪涌电流IFSM

指电力二极管所能承受最大的连续一个或几个工频周期的过电流。

(4) 电力二极管的主要类型

按照正向压降、反向耐压、反向漏电流等性能,特别是反向恢复特性的不同介绍

在应用时,应根据不同场合的不同要求,选择不同类型的电力二极管

性能上的不同是由半导体物理结构和工艺上的差别造成的

a. 普通二极管(General Purpose Diode

又称整流二极管(Rectifier Diode

多用于开关频率不高(1kHz以下)的整流电路中

其反向恢复时间较长,一般在5s以上,这在开关频率不高时并不重要

正向电流定额和反向电压定额可以达到很高,分别可达数千安和数千伏以上

b. 快恢复二极管(Fast Recovery Diode--FRD

恢复过程很短特别是反向恢复过程很短(5s以下)的二极管,也简称快速二极管

工艺上多采用了掺金措施

有的采用PN结型结构

有的采用改进的PiN结构

采用外延型PiN结构的的快恢复外延二极管(Fast Recovery Epitaxial Diodes--FRED),其反向恢复时间更短(可低于50ns),正向压降也很低(0.9V左右),但其反向耐压多在400V以下

从性能上可分为快速恢复和超快速恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100ns以下,甚至达到20~30ns

c. 肖特基二极管

以金属和半导体接触形成的势垒为基础的二极管称为肖特基势垒二极管(Schottky Barrier Diode--SBD),简称为肖特基二极管

20世纪80年代以来,由于工艺的发展得以在电力电子电路中广泛应用

肖特基二极管的优点:

反向恢复时间很短(10~40ns);

正向恢复过程中也不会有明显的电压过冲;

在反向耐压较低的情况下其正向压降也很小,明显低于快恢复二极管;

其开关损耗和正向导通损耗都比快速二极管还要小,效率高。

肖特基二极管的弱点:

当反向耐压提高时其正向压降也会高得不能满足要求,因此多用于200V以下;

反向漏电流较大且对温度敏感,因此反向稳态损耗不能忽略,而且必须更严格地限制其工作温度。

3 半控型器件--晶闸管

基本要求:掌握半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,熟练掌握器件的选取原则。

重点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则。

难点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数。

晶闸管(Thyristor):晶体闸流管,可控硅整流器(Silicon Controlled Rectifier--SCR

1956年美国贝尔实验室(Bell Laboratories)发明了晶闸管

1957年美国通用电气公司(General Electric Company)开发出第一只晶闸管产品

1958年商业化

开辟了电力电子技术迅速发展和广泛应用的崭新时代

20世纪80年代以来,开始被性能更好的全控型器件取代

能承受的电压和电流容量最高,工作可靠,在大容量的场合具有重要地位

晶闸管往往专指晶闸管的一种基本类型--普通晶闸管

广义上讲,晶闸管还包括其许多类型的派生器件

(1) 晶闸管的结构与工作原理

外形有螺栓型和平板型两种封装

引出阳极A、阴极K和门极(控制端)G三个联接端

对于螺栓型封装,通常螺栓是其阳极,能与散热器紧密联接且安装方便

平板型封装的晶闸管可由两个散热器将其夹在中间

Ic1=β1 IA + ICBO1 1-1

Ic2=β2 IK + ICBO2 1-2

IK=IA+IG 1-3

IA=IC1+IC2 1-4

式中β1和β2分别是晶体管V1V2的共基极电流增益;ICBO1ICBO2分别是V1V2的共基极漏电流。

晶体管的特性是:在低发射极电流下α是很小的,而当发射极电流建立起来之后,α迅速增大。

阻断状态:IG=0,α1+α2很小。流过晶闸管的漏电流稍大于两个晶体管漏电流之和

开通(门极触发):注入触发电流使晶体管的发射极电流增大以致α1+α2趋近于1的话,流过晶闸管的电流IA(阳极电流)将趋近于无穷大,实现饱和导通。IA实际由外电路决定。

其他几种可能导通的情况:

阳极电压升高至相当高的数值造成雪崩效应

阳极电压上升率du/dt过高

结温较高

光直接照射硅片,即光触发

光触发可以保证控制电路与主电路之间的良好绝缘而应用于高压电力设备中之外,其它都因不易控制而难以应用于实践,称为光控晶闸管(Light Triggered Thyristor--LTT

只有门极触发(包括光触发)是最精确、迅速而可靠的控制手段

2 )晶闸管的基本特性

a. 静态特性:

承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通;

承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通;

晶闸管一旦导通,门极就失去控制作用;

要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下。

晶闸管的伏安特性:

I象限的是正向特性;

III象限的是反向特性;

IG=0时,器件两端施加正向电压,正向阻断状态,只有很小的正向漏电流流过,正向电压超过临界极限即正向转折电压Ubo,则漏电流急剧增大,器件开通;

随着门极电流幅值的增大,正向转折电压降低;

导通后的晶闸管特性和二极管的正向特性相仿;

晶闸管本身的压降很小,在1V左右;

导通期间,如果门极电流为零,并且阳极电流降至接近于零的某一数值IH以下,则晶闸管又回到正向阻断状态。IH称为维持电流。

晶闸管上施加反向电压时,伏安特性类似二极管的反向特性。

晶闸管的门极触发电流从门极流入晶闸管,从阴极流出,

阴极是晶闸管主电路与控制电路的公共端,。

门极触发电流也往往是通过触发电路在门极和阴极之间施加触发电压而产生的。

晶闸管的门极和阴极之间是PNJ3,其伏安特性称为门极伏安特性。为保证可靠、安全的触发,触发电路所提供的触发电压、电流和功率应限制在可靠触发区。

b. 动态特性

1) 开通过程

延迟时间td:门极电流阶跃时刻开始,到阳极电流上升到稳态值的10%的时间;

上升时间tr:阳极电流从10%上升到稳态值的90%所需的时间;

开通时间tgt:以上两者之和,tgt= td + tr 1-6

普通晶闸管延迟时间为0.5-1.5μs,上升时间为0.5-3μs

2) 关断过程

反向阻断恢复时间trr:正向电流降为零到反向恢复电流衰减至接近于零的时间;

正向阻断恢复时间tgr:晶闸管要恢复其对正向电压的阻断能力还需要一段时间;

在正向阻断恢复时间内如果重新对晶闸管施加正向电压,晶闸管会重新正向导通;

实际应用中,应对晶闸管施加足够长时间的反向电压,使晶闸管充分恢复其对正向电压的阻断能力,电路才能可靠工作。

关断时间tqtrrtgr之和,即 tq=trr+tgr 1-7

普通晶闸管的关断时间约几百微秒。

(3) 晶闸管的主要参数

a. 电压定额

1) 断态重复峰值电压UDRM

在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压。

2) 反向重复峰值电压URRM

在门极断路而结温为额定值时,允许重复加在器件上的反向峰值电压。

3) 通态(峰值)电压UTM

晶闸管通以某一规定倍数的额定通态平均电流时的瞬态峰值电压。

通常取晶闸管的UDRMURRM中较小的标值作为该器件的额定电压。选用时,额定电压要留有一定裕量,一般取额定电压为正常工作时晶闸管所承受峰值电压的2~3倍,

b. 电流定额

1) 通态平均电流IT(AV) (额定电流)

晶闸管在环境温度为40(C和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。

使用时应按实际电流与通态平均电流有效值相等的原则来选取晶闸管

应留一定的裕量,一般取1.5-2

正弦半波电流平均值IT (AV)、电流有效值IT 和电流最大值Im三者的关系为:

1.1

1.2

各种有直流分量的电流波形,其电流波形的有效值I与平均值Id之比,称为这个电流的波形系数,用K f 表示。因此,在正弦半波情况下电流波形系数为:

1.3

所以,晶闸管在流过任意波形电流并考虑了安全裕量情况下的额定电流IT(AV) 的计算公式为:

1.4

在使用中还应注意,当晶闸管散热条件不满足规定要求时,则元件的额定电流应立即降低使用,否则元件会由于结温超过允许值而损坏。

2) 维持电流IH

使晶闸管维持导通所必需的最小电流

一般为几十到几百毫安,与结温有关,结温越高,则IH越小

3) 擎住电流IL

晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流

对同一晶闸管来说,通常IL约为IH2~4

4) 浪涌电流ITSM

指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流

c. 动态参数

除开通时间tgt和关断时间tq外,还有:

a. 断态电压临界上升率du/dt

指在额定结温和门极开路的情况下,不导致晶闸管从断态到通态转换的外加电压最大上升率

在阻断的晶闸管两端施加的电压具有正向的上升率时,相当于一个电容的J2结会有充电电流流过,被称为位移电流。此电流流经J3结时,起到类似门极触发电流的作用。如果电压上升率过大,使充电电流足够大,就会使晶闸管误导通

b. 通态电流临界上升率di/dt

指在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率

如果电流上升太快,则晶闸管刚一开通,便会有很大的电流集中在门极附近的小区域内,从而造成局部过热而使晶闸管损坏

(4) 晶闸管的派生器件

a. 快速晶闸管(Fast Switching Thyristor--FST

包括所有专为快速应用而设计的晶闸管,有快速晶闸管和高频晶闸管

管芯结构和制造工艺进行了改进,开关时间以及du/dtdi/dt耐量都有明显改善

普通晶闸管关断时间数百微秒,快速晶闸管数十微秒,高频晶闸管10μs左右

高频晶闸管的不足在于其电压和电流定额都不易做高

由于工作频率较高,选择通态平均电流时不能忽略其开关损耗的发热效应

b. 双向晶闸管(Triode AC Switch--TRIACBidirectional triode thyristor

可认为是一对反并联联接的普通晶闸管的集成

有两个主电极T1T2,一个门极G

正反两方向均可触发导通,所以双向晶闸管在第I和第III象限有对称的伏安特性

与一对反并联晶闸管相比是经济的,且控制电路简单,在交流调压电路、固态继电器(Solid State Relay--SSR)和交流电机调速等领域应用较多

通常用在交流电路中,因此不用平均值而用有效值来表示其额定电流值。

c. 逆导晶闸管(Reverse Conducting Thyristor--RCT

将晶闸管反并联一个二极管制作在同一管芯上的功率集成器件

具有正向压降小、关断时间短、高温特性好、额定结温高等优点

逆导晶闸管的额定电流有两个,一个是晶闸管电流,一个是反并联二极管的电流

d. 光控晶闸管(Light Triggered Thyristor--LTT

又称光触发晶闸管,是利用一定波长的光照信号触发导通的晶闸管

小功率光控晶闸管只有阳极和阴极两个端子

大功率光控晶闸管则还带有光缆,光缆上装有作为触发光源的发光二极管或半导体激光器

光触发保证了主电路与控制电路之间的绝缘,且可避免电磁干扰的影响,因此目前在高压大功率的场合,如高压直流输电和高压核聚变装置中,占据重要的地位。

4 典型全控型器件

基本要求:掌握典型全控型器件

重点:典型全控型器件

门极可关断晶闸管——在晶闸管问世后不久出现。

20世纪80年代以来,信息电子技术与电力电子技术在各自发展的基础上相结合——高频化、全控型、采用集成电路制造工艺的电力电子器件,从而将电力电子技术又带入了一个崭新时代

典型代表——门极可关断晶闸管、电力晶体管、电力场效应晶体管、绝缘栅双极晶体管

(1) 门极可关断晶闸管

门极可关断晶闸管(Gate-Turn-Off Thyristor——GTO

晶闸管的一种派生器件

可以通过在门极施加负的脉冲电流使其关断

GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大功率场合仍有较多的应用

2 电力晶体管

电力晶体管(Giant Transistor——GTR,直译为巨型晶体管)

耐高电压、大电流的双极结型晶体管(Bipolar Junction Transistor——BJT),英文有时候也称为Power BJT,在电力电子技术的范围内,GTRBJT这两个名称等效。

应用:

20世纪80年代以来,在中、小功率范围内取代晶闸管,但目前又大多被IGBT和电力MOSFET取代;

a. GTR的结构和工作原理

与普通的双极结型晶体管基本原理是一样的

主要特性是耐压高、电流大、开关特性好

通常采用至少由两个晶体管按达林顿接法组成的单元结构

采用集成电路工艺将许多这种单元并联而成

一般采用共发射极接法,集电极电流ic与基极电流ib之比为

1-9

( ——GTR的电流放大系数,反映了基极电流对集电极电流的控制能力)

当考虑到集电极和发射极间的漏电流Iceo时,icib的关系为

ic=βib +Iceo 1-10

产品说明书中通常给直流电流增益hFE——在直流工作情况下集电极电流与基极电流之比。一般可认为β≈βhFE

单管GTR的值比小功率的晶体管小得多,通常为10左右,采用达林顿接法可有效增大电流增益

b. GTR的基本特性

(1) 静态特性

共发射极接法时的典型输出特性:截止区、放大区和饱和区

在电力电子电路中GTR工作在开关状态,即工作在截止区或饱和区

在开关过程中,即在截止区和饱和区之间过渡时,要经过放大区

(2) 动态特性

开通过程

延迟时间td和上升时间tr,二者之和为开通时间ton

td主要是由发射结势垒电容和集电结势垒电容充电产生的。增大ib的幅值并增大dib/dt,可缩短延迟时间,同时可缩短上升时间,从而加快开通过程

关断过程

储存时间ts和下降时间tf,二者之和为关断时间toff

ts是用来除去饱和导通时储存在基区的载流子的,是关断时间的主要部分

减小导通时的饱和深度以减小储存的载流子,或者增大基极抽取负电流Ib2的幅值和负偏压,可缩短储存时间,从而加快关断速度

负面作用是会使集电极和发射极间的饱和导通压降Uces增加,从而增大通态损耗

GTR的开关时间在几微秒以内,比晶闸管和GTO都短很多

c. GTR的主要参数

前已述及:电流放大倍数(、直流电流增益hFE、集射极间漏电流Iceo、集射极间饱和压降Uces、开通时间ton和关断时间toff

此外还有:

1) 最高工作电压

GTR上电压超过规定值时会发生击穿

击穿电压不仅和晶体管本身特性有关,还与外电路接法有关

BUcbo> BUcex> BUces> BUcer> BUceo

实际使用时,为确保安全,最高工作电压要比BUceo低得多

2) 集电极最大允许电流IcM

通常规定为hFE下降到规定值的1/2~1/3时所对应的Ic

实际使用时要留有裕量,只能用到IcM的一半或稍多一点

3) 集电极最大耗散功率PcM

最高工作温度下允许的耗散功率

产品说明书中给PcM时同时给出壳温TC,间接表示了最高工作温度

d. GTR的二次击穿现象与安全工作区

一次击穿:

集电极电压升高至击穿电压时,Ic迅速增大,出现雪崩击穿;

只要Ic不超过限度,GTR一般不会损坏,工作特性也不变。

二次击穿:

一次击穿发生时Ic增大到某个临界点时会突然急剧上升,并伴随电压的陡然下降,

常常立即导致器件的永久损坏,或者工作特性明显衰变。

安全工作区(Safe Operating Area——SOA

最高电压UceM、集电极最大电流IcM、最大耗散功率PcM、二次击穿临界线限定。

1-14 GTR的安全工作区

 

(3) 电力场效应晶体管

也分为结型和绝缘栅型(类似小功率Field Effect Transistor——FET

但通常主要指绝缘栅型中的MOS型(Metal Oxide Semiconductor FET

简称电力MOSFETPower MOSFET

结型电力场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT

特点——用栅极电压来控制漏极电流

驱动电路简单,需要的驱动功率小

开关速度快,工作频率高

热稳定性优于GTR

电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置

a. 电力MOSFET的结构和工作原理

电力MOSFET的种类

按导电沟道可分为P沟道和N沟道

耗尽型——当栅极电压为零时漏源极之间就存在导电沟道

增强型——对于NP)沟道器件,栅极电压大于(小于)零时才存在导电沟道

电力MOSFET主要是N沟道增强型

电力MOSFET的结构

导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管

导电机理与小功率MOS管相同,但结构上有较大区别

小功率MOS管是横向导电器件

电力MOSFET大都采用垂直导电结构,又称为VMOSFETVertical MOSFET——大大提高了MOSFET器件的耐压和耐电流能力

按垂直导电结构的差异,又分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFETVertical Double-diffused MOSFET

这里主要以VDMOS器件为例进行讨论

电力MOSFET的多元集成结构

国际整流器公司(International Rectifier)的HEXFET采用了六边形单元

西门子公司(Siemens)的SIPMOSFET采用了正方形单元

摩托罗拉公司(Motorola)的TMOS采用了矩形单元按“品”字形排列

电力MOSFET的工作原理

截止:漏源极间加正电源,栅源极间电压为零

P基区与N漂移区之间形成的PNJ1反偏,漏源极之间无电流流过

导电:在栅源极间加正电压UGS

栅极是绝缘的,所以不会有栅极电流流过。但栅极的正电压会将其下面P区中的空穴推开,而将P区中的少子——电子吸引到栅极下面的P区表面

UGS大于UT(开启电压或阈值电压)时,栅极下P区表面的电子浓度将超过空穴浓度,使P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PNJ1消失,漏极和源极导电

b. 电力MOSFET的基本特性

1) 静态特性

漏极电流ID和栅源间电压UGS的关系称为MOSFET的转移特性

ID较大时,IDUGS的关系近似线性,曲线的斜率定义为跨导Gfs

MOSFET的漏极伏安特性(输出特性):

截止区(对应于GTR的截止区)

饱和区(对应于GTR的放大区)

非饱和区(对应于GTR的饱和区)

电力MOSFET工作在开关状态,即在截止区和非饱和区之间来回转换

电力MOSFET漏源极之间有寄生二极管,漏源极间加反向电压时器件导通

电力MOSFET的通态电阻具有正温度系数,对器件并联时的均流有利

2) 动态特性

up—脉冲信号源,Rs—信号源内阻,RG—栅极电阻,RL—负载电阻,RF—检测漏极电流

开通过程

开通延迟时间td(on) —— up前沿时刻到uGS=UT并开始出现iD的时刻间的时间段

上升时间tr—— uGSuT上升到MOSFET进入非饱和区的栅压UGSP的时间段

iD稳态值由漏极电源电压UE和漏极负载电阻决定

UGSP的大小和iD的稳态值有关

UGS达到UGSP后,在up作用下继续升高直至达到稳态,但iD已不变

开通时间ton——开通延迟时间与上升时间之和

开通过程

关断延迟时间td(off) ——up下降到零起,Cin通过RsRG放电,uGS按指数曲线下降到UGSP时,iD开始减小止的时间段

下降时间tf—— uGSUGSP继续下降起,iD减小,到uGS时沟道消失,iD下降到零为止的时间段

关断时间toff——关断延迟时间和下降时间之和

MOSFET的开关速度

MOSFET的开关速度和Cin充放电有很大关系

使用者无法降低Cin,但可降低驱动电路内阻Rs减小时间常数,加快开关速度

MOSFET只靠多子导电,不存在少子储存效应,因而关断过程非常迅速

开关时间在10~100ns之间,工作频率可达100kHz以上,是主要电力电子器件中最高的

场控器件,静态时几乎不需输入电流。但在开关过程中需对输入电容充放电,仍需一定的驱动功率。开关频率越高,所需要的驱动功率越大。

c. 电力MOSFET的主要参数

跨导Gfs、开启电压UT以及td(on)trtd(off)tf之外,还有

1) 漏极电压UDS 电力MOSFET电压定额

2) 漏极直流电流ID和漏极脉冲电流幅值IDM 电力MOSFET电流定额

3) 栅源电压UGS 栅源之间的绝缘层很薄,?UGS?>20V将导致绝缘层击穿

4) 极间电容

极间电容CGSCGDCDS

厂家提供:漏源极短路时的输入电容Ciss、共源极输出电容Coss和反向转移电容Crss

Ciss= CGS+ CGD 1-14

Crss= CGD 1-15

Coss= CDS+ CGD 1-16

输入电容可近似用Ciss代替

这些电容都是非线性的

漏源间的耐压、漏极最大允许电流和最大耗散功率决定了电力MOSFET的安全工作区

一般来说,电力MOSFET不存在二次击穿问题,这是它的一大优点

实际使用中仍应注意留适当的裕量

(4) 绝缘栅双极晶体管

GTRGTO的特点——双极型,电流驱动,有电导调制效应,通流能力很强,开关速度较低,所需驱动功率大,驱动电路复杂

MOSFET的优点——单极型,电压驱动,开关速度快,输入阻抗高,热稳定性好,所需驱动功率小而且驱动电路简单

两类器件取长补短结合而成的复合器件——Bi-MOS器件

绝缘栅双极晶体管(Insulated-gate Bipolar Transistor——IGBTIGT

GTRMOSFET复合,结合二者的优点,具有良好的特性

1986年投入市场后,取代了GTR和一部分MOSFET的市场,中小功率电力电子设备的主导器件

继续提高电压和电流容量,以期再取代GTO的地位

a. IGBT的结构和工作原理

三端器件:栅极G、集电极C和发射极E

IGBT的结构

1-19a—N沟道VDMOSFETGTR组合——N沟道IGBTN-IGBT

IGBTVDMOSFET多一层P+注入区,形成了一个大面积的P+NJ1

——使IGBT导通时由P+注入区向N基区发射少子,从而对漂移区电导率进行调制,使得IGBT具有很强的通流能力

简化等效电路表明,IGBTGTRMOSFET组成的达林顿结构,一个由MOSFET驱动的厚基区PNP晶体管

RN为晶体管基区内的调制电阻

IGBT的原理

驱动原理与电力MOSFET基本相同,场控器件,通断由栅射极电压uGE决定

导通:uGE大于开启电压UGE(th)时,MOSFET内形成沟道,为晶体管提供基极电流,IGBT导通

导通压降:电导调制效应使电阻RN减小,使通态压降小

关断:栅射极间施加反压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,IGBT关断

b. IGBT的基本特性

1) IGBT的静态特性

转移特性——ICUGE间的关系,与MOSFET转移特性类似

开启电压UGE(th)——IGBT能实现电导调制而导通的最低栅射电压

UGE(th)随温度升高而略有下降,在+25(C时,UGE(th)的值一般为2~6V

输出特性(伏安特性)——UGE为参考变量时,ICUCE间的关系

分为三个区域:正向阻断区、有源区和饱和区。分别与GTR的截止区、放大区和饱和区相对应

uCE<0时,IGBT为反向阻断工作状态

2) IGBT的动态特性

IGBT的开通过程

MOSFET的相似,因为开通过程中IGBT在大部分时间作为MOSFET运行

开通延迟时间td(on) ——uGE上升至其幅值10%的时刻,到iC上升至10% ICM

电流上升时间tr ——iC10%ICM上升至90%ICM所需时间

开通时间ton——开通延迟时间与电流上升时间之和

uCE的下降过程分为tfv1tfv2两段。tfv1——IGBTMOSFET单独工作的电压下降过程;tfv2——MOSFETPNP晶体管同时工作的电压下降过程

IGBT的关断过程

关断延迟时间td(off) ——uGE后沿下降到其幅值90%的时刻起,到iC下降至90%ICM

电流下降时间——iC90%ICM下降至10%ICM

关断时间toff——关断延迟时间与电流下降时间之和

电流下降时间又可分为tfi1tfi2两段。tfi1——IGBT内部的MOSFET的关断过程,iC下降较快;tfi2——IGBT内部的PNP晶体管的关断过程,iC下降较慢

IGBT中双极型PNP晶体管的存在,虽然带来了电导调制效应的好处,但也引入了少子储存现象,因而IGBT的开关速度低于电力MOSFET

IGBT的击穿电压、通态压降和关断时间也是需要折衷的参数

c. IGBT的主要参数

1) 最大集射极间电压UCES 由内部PNP晶体管的击穿电压确定

2) 最大集电极电流 包括额定直流电流IC1ms脉宽最大电流ICP

3) 最大集电极功耗PCM 正常工作温度下允许的最大功耗

IGBT的特性和参数特点

(1) 开关速度高,开关损耗小。在电压1000V以上时,开关损耗只有GTR1/10,与电力MOSFET相当

(2) 相同电压和电流定额时,安全工作区比GTR大,且具有耐脉冲电流冲击能力

(3) 通态压降比VDMOSFET低,特别是在电流较大的区域

(4) 输入阻抗高,输入特性与MOSFET类似

(5) MOSFETGTR相比,耐压和通流能力还可以进一步提高,同时保持开关频率高的特点

d. IGBT的擎住效应和安全工作区

寄生晶闸管——由一个N-PN+晶体管和作为主开关器件的P+N-P晶体管组成

擎住效应或自锁效应:NPN晶体管基极与发射极之间存在体区短路电阻,P形体区的横向空穴电流会在该电阻上产生压降,相当于对J3结施加正偏压,一旦J3开通,栅极就会失去对集电极电流的控制作用,电流失控

动态擎住效应比静态擎住效应所允许的集电极电流小

正偏安全工作区(FBSOA——最大集电极电流、最大集射极间电压和最大集电极功耗确定

反向偏置安全工作区(RBSOA——最大集电极电流、最大集射极间电压和最大允许电压上升率duCE/dt确定

擎住效应曾限制IGBT电流容量提高,20世纪90年代中后期开始逐渐解决

IGBT往往与反并联的快速二极管封装在一起,制成模块,成为逆导器件

5 其他新型电力电子器件

(1) MOS控制晶闸管MCT

MCTMOS Controlled Thyristor——MOSFET与晶闸管的复合

MCT结合了二者的优点:

MOSFET的高输入阻抗、低驱动功率、快速的开关过程

晶闸管的高电压大电流、低导通压降

一个MCT器件由数以万计的MCT元组成,每个元的组成为:一个PNPN晶闸管,一个控制该晶闸管开通的MOSFET,和一个控制该晶闸管关断的MOSFET

MCT曾一度被认为是一种最有发展前途的电力电子器件。因此,20世纪80年代以来一度成为研究的热点。但经过十多年的努力,其关键技术问题没有大的突破,电压和电流容量都远未达到预期的数值,未能投入实际应用

(2) 静电感应晶体管SIT

SITStatic Induction Transistor——1970年,结型场效应晶体管

小功率SIT器件的横向导电结构改为垂直导电结构,即可制成大功率的SIT器件

多子导电的器件,工作频率与电力MOSFET相当,甚至更高,功率容量更大,因而适用于高频大功率场合

在雷达通信设备、超声波功率放大、脉冲功率放大和高频感应加热等领域获得应用

缺点:

栅极不加信号时导通,加负偏压时关断,称为正常导通型器件,使用不太方便

通态电阻较大,通态损耗也大,因而还未在大多数电力电子设备中得到广泛应用

(3) 静电感应晶闸管SITH

SITHStatic Induction

Thyristor——1972年,在SIT的漏极层上附加一层与漏极层导电类型不同的发射极层而得到,因其工作原理与SIT类似,门极和阳极电压均能通过电场控制阳极电流,因此SITH又被称为场控晶闸管(Field

Controlled Thyristor——FCT

SIT多了一个具有少子注入功能的PN结,

SITH是两种载流子导电的双极型器件,具有电导调制效应,通态压降低、通流能力强。其很多特性与GTO类似,但开关速度比GTO高得多,是大容量的快速器件

SITH一般也是正常导通型,但也有正常关断型。此外,其制造工艺比GTO复杂得多,电流关断增益较小,因而其应用范围还有待拓展

(4) 集成门极换流晶闸管IGCT

IGCTIntegrated Gate-Commutated Thyristor),也称GCTGate-Commutated

Thyristor),20世纪90年代后期出现,结合了IGBTGTO的优点,容量与GTO相当,开关速度快10倍,且可省去GTO庞大而复杂的缓冲电路,只不过所需的驱动功率仍很大

目前正在与IGBT等新型器件激烈竞争,试图最终取代GTO在大功率场合的位置

(5) 功率模块与功率集成电路

20世纪80年代中后期开始,模块化趋势,将多个器件封装在一个模块中,称为功率模块

可缩小装置体积,降低成本,提高可靠性

对工作频率高的电路,可大大减小线路电感,从而简化对保护和缓冲电路的要求

将器件与逻辑、控制、保护、传感、检测、自诊断等信息电子电路制作在同一芯片上,称为功率集成电路(Power Integrated Circuit——PIC

类似功率集成电路的还有许多名称,但实际上各有侧重

高压集成电路(High Voltage IC——HVIC)一般指横向高压器件与逻辑或模拟控制电路的单片集成

智能功率集成电路(Smart Power IC——SPIC)一般指纵向功率器件与逻辑或模拟控制电路的单片集成

智能功率模块(Intelligent Power

Module——IPM)则专指IGBT及其辅助器件与其保护和驱动电路的单片集成,也称智能IGBTIntelligent IGBT

功率集成电路的主要技术难点:高低压电路之间的绝缘问题以及温升和散热的处理

以前功率集成电路的开发和研究主要在中小功率应用场合

智能功率模块在一定程度上回避了上述两个难点,最近几年获得了迅速发展

功率集成电路实现了电能和信息的集成,成为机电一体化的理想接口

6 电力电子器件器件的驱动

(1) 电力电子器件驱动电路概述

驱动电路——主电路与控制电路之间的接口

使电力电子器件工作在较理想的开关状态,缩短开关时间,减小开关损耗,对装置的运行效率、可靠性和安全性都有重要的意义

对器件或整个装置的一些保护措施也往往设在驱动电路中,或通过驱动电路实现

驱动电路的基本任务:将信息电子电路传来的信号按控制目标的要求,转换为加在电力电子器件控制端和公共端之间,可以使其开通或关断的信号

对半控型器件只需提供开通控制信号

对全控型器件则既要提供开通控制信号,又要提供关断控制信号

驱动电路还要提供控制电路与主电路之间的电气隔离环节,一般采用光隔离或磁隔离

光隔离一般采用光耦合器

磁隔离的元件通常是脉冲变压器

电流驱动型和电压驱动型

具体形式可为分立元件的,但目前的趋势是采用专用集成驱动电路

双列直插式集成电路及将光耦隔离电路也集成在内的混合集成电路

为达到参数最佳配合,首选所用器件生产厂家专门开发的集成驱动电路

(2) 晶闸管的触发电路

作用:产生符合要求的门极触发脉冲,保证晶闸管在需要的时刻由阻断转为导通

广义上讲,还包括对其触发时刻进行控制的相位控制电路

晶闸管触发电路应满足下列要求:

触发脉冲的宽度应保证晶闸管可靠导通(结合擎住电流的概念)

触发脉冲应有足够的幅度

不超过门极电压、电流和功率定额,且在可靠触发区域之内

应有良好的抗干扰性能、温度稳定性及与主电路的电气隔离

(3) 典型全控型器件的驱动电路

a. 电流驱动型器件的驱动电路

GTR

开通驱动电流应使GTR处于准饱和导通状态,使之不进入放大区和深饱和区

关断GTR时,施加一定的负基极电流有利于减小关断时间和关断损耗,关断后同样应在基射极之间施加一定幅值(6V左右)的负偏压

GTR的一种驱动电路,包括电气隔离和晶体管放大电路两部分

1-25 理想的GTR基极驱动电流波形

二极管VD2和电位补偿二极管VD3构成贝克箝位电路,也即一种抗饱和电路,负载较轻时,如V5发射极电流全注入V,会使V过饱和。有了贝克箝位电路,当V过饱和使得集电极电位低于基极电位时,VD2会自动导通,使多余的驱动电流流入集电极,维持Ubc0

C2为加速开通过程的电容。开通时,R5C2短路。可实现驱动电流的过冲,并增加前沿的陡度,加快开通

1-26 GTR的一种驱动电路

驱动GTR的集成驱动电路:THOMSON公司的UAA4002和三菱公司的M57215BL

b. 电压驱动型器件的驱动电路

栅源间、栅射间有数千皮法的电容,为快速建立驱动电压,要求驱动电路输出电阻小

使MOSFET开通的驱动电压一般10~15V,使IGBT开通的驱动电压一般15 ~ 20V

关断时施加一定幅值的负驱动电压(一般取 -5 ~ -15V)有利于减小关断时间和关断损耗

在栅极串入一只低值电阻(数十欧左右)可以减小寄生振荡,该电阻阻值应随被驱动器件电流额定值的增大而减小

电力MOSFET的一种驱动电路:电气隔离和晶体管放大电路两部分

无输入信号时高速放大器A输出负电平,V3导通输出负驱动电压

当有输入信号时A输出正电平,V2导通输出正驱动电压

1-27 电力MOSFET的一种驱动电路

专为驱动电力MOSFET而设计的混合集成电路有三菱公司的M57918L,其输入信号电流幅值为16mA,输出最大脉冲电流为+2A-3A,输出驱动电压+15V-10V

IGBT的驱动

多采用专用的混合集成驱动器

常用的有三菱公司的M579系列(如M57962LM57959L)和富士公司的EXB系列(如EXB840EXB841EXB850EXB851

内部具有退饱和检测和保护环节,当发生过电流时能快速响应但慢速关断IGBT,并向外部电路给出故障信号

M57962L输出的正驱动电压均为+15V左右,负驱动电压为 -10V

7 电力电子器件器件的保护

重点:了解电力电子器件的保护

(1) 过电压的产生及过电压保护

电力电子装置可能的过电压——外因过电压和内因过电压

外因过电压主要来自雷击和系统中的操作过程等外因

a. 操作过电压:由分闸、合闸等开关操作引起

b. 雷击过电压:由雷击引起

内因过电压主要来自电力电子装置内部器件的开关过程

a. 换相过电压:晶闸管或与全控型器件反并联的二极管在换相结束后不能立刻恢复阻断,因而有较大的反向电流流过,当恢复了阻断能力时,该反向电流急剧减小,会由线路电感在器件两端感应出过电压

b. 关断过电压:全控型器件关断时,正向电流迅速降低而由线路电感在器件两端感应出的过电压

电力电子装置可视具体情况只采用其中的几种

其中RC3RCD为抑制内因过电压的措施,其功能已属缓冲电路

外因过电压抑制措施中,RC过电压抑制电路最为常见,典型联结方式见图1-30

RC过电压抑制电路可接于供电变压器的两侧(供电网一侧称网侧,电力电子电路一侧称阀侧),或电力电子电路的直流侧

保护电路参数计算可参考相关工程手册

其他措施:用雪崩二极管、金属氧化物压敏电阻、硒堆和转折二极管(BOD)等非线性元器件限制或吸收过电压

(2) 过电流保护

过电流——过载和短路两种情况

快速熔断器、直流快速断路器和过电流继电器

同时采用几种过电流保护措施,提高可靠性和合理性

电子电路作为第一保护措施,快熔仅作为短路时的部分区段的保护,直流快速断路器整定在电子电路动作之后实现保护,过电流继电器整定在过载时动作

快速熔断器

电力电子装置中最有效、应用最广的一种过电流保护措施

选择快熔时应考虑:

a. 电压等级根据熔断后快熔实际承受的电压确定

b. 电流容量按其在主电路中的接入方式和主电路联结形式确定

c. 快熔的I 2t值应小于被保护器件的允许I 2t

d. 为保证熔体在正常过载情况下不熔化,应考虑其时间-电流特性

快熔对器件的保护方式:全保护和短路保护两种

全保护:过载、短路均由快熔进行保护,适用于小功率装置或器件裕度较大的场合

短路保护方式:快熔只在短路电流较大的区域起保护作用

对重要的且易发生短路的晶闸管设备,或全控型器件(很难用快熔保护),需采用电子电路进行过电流保护

常在全控型器件的驱动电路中设置过电流保护环节,响应最快

(3) 缓冲电路(Snubber Circuit

缓冲电路(吸收电路):抑制器件的内因过电压、du/dt、过电流和di/dt,减小器件的开关损耗

关断缓冲电路(du/dt抑制电路)——吸收器件的关断过电压和换相过电压,抑制du/dt,减小关断损耗

开通缓冲电路(di/dt抑制电路)——抑制器件开通时的电流过冲和di/dt,减小器件的开通损耗

将关断缓冲电路和开通缓冲电路结合在一起——复合缓冲电路

其他分类法:耗能式缓冲电路和馈能式缓冲电路(无损吸收电路)

通常将缓冲电路专指关断缓冲电路,将开通缓冲电路叫做di/dt抑制电路

缓冲电路作用分析

无缓冲电路:

V开通时电流迅速上升,di/dt很大

关断时du/dt很大,并出现很高的过电压

有缓冲电路

V开通时:Cs通过RsV放电,使iC先上一个台阶,以后因有LiiC上升速度减慢

V关断时:负载电流通过VDsCs分流,减轻了V的负担,抑制了du/dt和过电压

关断时的负载曲线

无缓冲电路时:uCE迅速升,L感应电压使VD通,负载线从A移到B,之后iC才下降到漏电流的大小,负载线随之移到C

有缓冲电路时:Cs分流使iCuCE开始上升时就下降,负载线经过D到达C

负载线ADC安全,且经过的都是小电流或小电压区域,关断损耗大大降低

1-33 关断时的负载线

缓冲电路中的元件选取及其他注意事项

CsRs的取值可实验确定或参考工程手册

VDs必须选用快恢复二极管,额定电流不小于主电路器件的1/10

尽量减小线路电感,且选用内部电感小的吸收电容

中小容量场合,若线路电感较小,可只在直流侧设一个du/dt抑制电路

IGBT甚至可以仅并联一个吸收电容

晶闸管在实用中一般只承受换相过电压,没有关断过电压,关断时也没有较大的du/dt,一般采用RC吸收电路即可

1/21/3额定电流以下的区段,通态压降具有负的温度系数

在以上的区段则具有正温度系数

并联使用时也具有电流的自动均衡能力,易于并联

8 电力电子器件器件的串联和并联使用

重点:了解电力电子器件的串并联

当单个器件的电压或电流定额不能满足要求时,需将器件串联或并联或者将装置串联或并联

(1) 晶闸管的串联

目的:当晶闸管额定电压小于要求时,可以串联

问题:理想串联希望器件分压相等,但因特性差异,使器件电压分配不均匀

静态不均压:串联的器件流过的漏电流相同,但因静态伏安特性的分散性,各器件分压不等

承受电压高的器件首先达到转折电压而导通,使另一个器件承担全部电压也导通,失去控制作用

反向时,可能使其中一个器件先反向击穿,另一个随之击穿

静态均压措施

选用参数和特性尽量一致的器件

采用电阻均压,Rp的阻值应比器件阻断时的正、反向电阻小得多

动态均压措施

动态不均压——由于器件动态参数和特性的差异造成的不均压

动态均压措施:

选择动态参数和特性尽量一致的器件

RC并联支路作动态均压

采用门极强脉冲触发可以显著减小器件开通时间上的差异

(2) 晶闸管的并联

目的:多个器件并联来承担较大的电流

问题:会分别因静态和动态特性参数的差异而电流分配不均匀

均流措施

挑选特性参数尽量一致的器件

采用均流电抗器

用门极强脉冲触发也有助于动态均流

当需要同时串联和并联晶闸管时,通常采用先串后并的方法联接。

(3) 电力MOSFETIGBT并联运行的特点

电力MOSFET并联运行的特点

Ron具有正温度系数,具有电流自动均衡的能力,容易并联

注意选用RonUTGfsCiss尽量相近的器件并联

电路走线和布局应尽量对称

可在源极电路中串入小电感,起到均流电抗器的作用

IGBT并联运行的特点

1/21/3额定电流以下的区段,通态压降具有负的温度系数

1/21/3额定电流以上的区段,通态压降具有正的温度系数

因而IGBT在并联使用时也具有电流的自动均衡能力

本章小结

全面介绍各种主要电力电子器件的基本结构、工作原理、基本特性和主要参数等

集中讨论电力电子器件的驱动、保护和串、并联使用

电力电子器件类型归纳

单极型:电力MOSFETSIT

双极型:电力二极管、晶闸管、GTOGTRSITH

复合型:IGBTMCT

电压驱动型:单极型器件和复合型器件,双极型器件中的SITH

特点:输入阻抗高,所需驱动功率小,驱动电路简单,工作频率高

电流驱动型:双极型器件中除SITH

特点:具有电导调制效应,因而通态压降低,导通损耗小,但工作频率较低,所需驱动功率大,驱动电路较复杂

当前的格局

IGBT为主体,第四代产品,制造水平2.5kV / 1.8kA,兆瓦以下首选。不断发展,与IGCT等新器件激烈竞争,试图在兆瓦以上取代GTO

GTO:兆瓦以上首选,制造水平6kV / 6kA

光控晶闸管:功率更大场合,8kV / 3.5kA,装置最高达300MVA,容量最大

电力MOSFET:长足进步,中小功率领域特别是低压,地位牢固

本文来源:https://www.2haoxitong.net/k/doc/d69408cc590216fc700abb68a98271fe900eaf5d.html

《电力电子器件大全及使用方法详解.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式