pick1蛋白 周伟驰

发布时间:2017-03-31 15:31:42   来源:文档文库   
字号:

一个功能多样的蛋白——PICK1

13药物分析 周伟驰 学号13316057

摘要

人体中的基本组成物质是蛋白质。蛋白质对人体有着非常大的影响,一旦蛋白质出现了问题或者发生病变导致异常,尤其是关键位置类似于功能结构数量上的病变异常,甚至会导致疾病和伤痛近年来国内外对PICK1蛋白的研究越来越多,包括依据PICK1蛋白的空间结构构型、功能特性等发现有效的药物靶点, 如PICK1蛋白PDZ结构域与配体C末端区域功能、PICK1蛋白理化性质与空间构型等方面的研究同时还有对PICK1蛋白在神经或神经范围内与其他物质相互作用的各类研究随着PICK1研发前景越来越清晰,更多的研究人员投入到了PICK1的探索过程中在这方面国外的研究更多一些。本文PICK1的性质、PICK1神经与非神经功能上介绍PICK1蛋白作用的特点和理化特性。

Abstract:

As the basic composition of the human body, the protein in the human body plays a huge role, the root cause of some diseases are some of the key position in the protein abnormalities (abnormal or abnormal number of features or lesions, etc.). At home and abroad in recent years more and more research on PICK1 protein, including the basis of spatial structure configuration, the function of the PICK1 protein characteristics found effective drug targets, such as the study of PICK1 protein PDZ domain and ligand C terminal region PICK1 protein function, physicochemical properties and spatial configuration and other aspects, as well as the study of various types of PICK1 protein the interaction with other substances in the nervous or non nervous range. With the PICK1 research and development prospects more and more clear, more researchers into the exploration process of PICK1. In this regard, more foreign research.

关键词:

靶点蛋白,转运蛋白,PICK1,PKC,PDZ结构域BAR结构域ICA, AMPA受体,GLuA,

Key words:

PICK1, PKC, PDZ domain, BAR domain, ICA, transport protien, AMPA receptor, GLuATarget protein

1.PICK1蛋白介绍

1.1 PICK1蛋白的结构理化性质

PICK1是含有PDZPSD-95/discslarge/ZO-1结构域和自动抑制BAR结构域的骨架蛋白[1]PICK1中结构域有PDZ结构域、BAR域、NARhe N-terminal acidic region N-末端酸性区CARC-terminal acidic region C-末端酸性区一个链接区。PDZ域与AMPA受体的末端结合受NAR域调节[2]BAR域的亲水亲脂两性蛋白直接与细胞膜的脂类直接结合并使脂质体变形形成通道从而将AMPA受体转运至膜上链接区域可增强BAR域结合脂质体的能力CAR域则抑制这种能力。单一的PDZ结构域首选的结合位点是BAR二聚体的凹腔因此,由于弱疏水相互作用,BAR二聚体凹面首先开始容纳PDZ结构域,然后是疏水性更好的PDZ结构域的凹面中心[3]

1.2 PICK1在PKC中的作用

蛋白激酶C(PKC)在控制增殖和分化大范围的细胞类型中起着核心作用,调节激素类和生长因子的信号传导。在活化甘油二酯后,PKC转移到众多的磷酸化蛋白质中不同的亚细胞上。PCIK1蛋白定位于核膜并且能磷酸化PKC的活化。[4]指定PICK1后,这些蛋白之一表现出与PKC的活化结构域相互作用的特异性,并且是一种在体外和体内都能有效磷酸化PKC的底物。[5]

1.3 K83位点PICK1的改变

改变 K83位点的氨基酸结构,很可能会改变 PICK1 PDZ 结构域与 GluR2AMPA-type glutamate receptor subunit 2 AMPA型谷氨酸受体亚基2 C末端结合所形成的疏水氢键静电相互作用,使得 PDZ 结构域与 GluR2 C末端的结合能力发生不同程度的改变[6]

2. PICK1蛋白神经方面的作用

2.1 PICK1与GRIP调节AMPAR和KAR在突触上的传递

PICK1蛋白的相互作用是AMPA受体在神经突触传递中的一个关键调节因子 [7] 将蛋白激酶C以PICK1为靶向,使红藻氨酸受体磷酸化,与谷氨酸受体作用蛋白相互作用,使此反应在突触上稳定。最重要的是,这个机制不参与AMPAR(AMPA受体)基本循环,由于PDZ结构域的阻断,可以同时增加AMPA受体、减少红藻氨酸受体(KAR)在同数量上的突触传递。[8-10]

2.2 PICK1和轴突之间的相互作用调节囊泡转运和ASIC神经元蛋白表达

PICK1和轴突之间的相互作用介导囊泡转运,PICK1作为一个驱动蛋白结合蛋白介导突触囊泡和线粒体在轴突转运。此外,我们发现轴突形成的复合物与PICK1和ASICs(acid-sensing ion channels酸敏感离子通道)一起调节ASIC型神经元蛋白的表达,并参与诱导ASIC感应型acidotoxicity[11-12]

2.3 PICK1影响AGO2的功能

PICK1是AGO2蛋白和BAR结构域蛋白之间的一种新的相互作用。我们发现,PICK1促进 Ago2定位在神经元树突的核内体隔室,抑制Ago2平移抑制神经刺激的功能。[13]

2.4 PICK1转导AMPA受体对Cdc42功能神经元刺激

通过不同但重叠的结合位点,PICK1能与Rac1蛋白和Cdc42cell division cycle protein细胞分裂周期蛋白42结合。此外,在神经元通过PICK1依赖过程中,AMPA受体刺激Cdc42使其停止,并改变洗涤剂的溶解性。这证明,PICK1在转导AMPA受体对Cdc42功能神经元刺激时的新作用。[14]

2.5 PICK1敲除N-WASP过表达会影响细胞形态

星形胶质细胞缺血条件下诱导的扩张延迟是被PICK1敲除因为N-WASP过表达。[15]

2.6 PICK1和PACSIN1相互作用是AMPA受体内化所必需的

神经元特异性蛋白(PACSIN1)受到抑制会导致海马神经元里AMPA受体内化后NMDAN-甲基-D-天冬氨酸受体的活化显著降低。数据表明,PICK1和PACSIN的互相影响是AMPA受体内化和长期小脑萎缩所需的[16]

3.PICK1蛋白非神经方面的作用

3.1 C末端酸性区存在决定PICK1中PDZ结构域的亲和力以及BAR结构域的脂质结合能力

因为C末端酸性区,BAR结构域与膜脂降低10倍的结合能力;与不含C末端酸性区的情况相比, BAR和PDZ结构域相互作用增强了4倍。当钙离子浓度升高时,在C末端酸性区的作用下,增强了BAR与膜脂的结合能力同时削弱了PDZ和BAR结构域的相互作用。钙离子500μmol/L时,与没有酸性区的情况保持数值平衡。

[17]

3.2 PICK1参与AMPAR运输

PICK1Arp2/3Arp 肌动蛋白相关蛋白)复相互作用[18]GTPasegtp磷酸水解酶类 Arf1调节树突棘上的聚合肌动蛋白,和AMPA受体亚基GluA2/3结合并参与到GluR2AMPA-type glutamate receptor subunit 2 AMPA型谷氨酸受体亚基2依赖性AMPA受体运输。[14]PICK1是一种新型的脊动态调节器。通过Arp2 / 3的抑制作用,PICK1更能与LTD中的不同角色互补,以此来调节APMP受体运输和主体大小过程[19]

3.3 PICK1在TβRI小窝蛋白作用中的意义

PICK1通过 TβRItargeting TGF-β type I receptor TGF-βI型靶向受体 的降解传递拮抗TGF-βtransforming growth factor beta转化生长因子β的信号 。PICK1增强了小窝蛋白介导的内吞作用TβRI泛素化和降解[7]

3.4 乳腺肿瘤过程中PICK1的意义

在观察人类乳腺肿瘤过程中PICK1的表达与TβRI或磷酸化的Smad2Smad蛋白的一种,与Smad3相同,可调β转化生长因子(TGF-β)激活剂(activin)的信号转导水平呈负相关,表明PICK1有可能通过抑制TGF-β信号参与了乳腺癌的过程。可以利用生物小分子物质特异性地结合PICK1PDZ结构域,干扰或阻断PICK1 与配体蛋白的天然相互作用,最终达到治疗相关疾病的目的。[7,20]

3.5 款冬提取物对PICK1的作用

实验发现,款冬提取物与PICK1的结合位点位于PDZ结构域,款冬提取物能有效抑制PDZ结构域与GluR2的相互作用[21]

3.6 PICK1与ICA69共同作用催熟突触和胰岛素颗粒

作为PICK1的结合物,ICA69胰岛细胞自身抗原69可以防止突触GluA2募集,被ICA69负调节的PICK1可以促进突触的成熟。[22]其中ICACICA69的C-末端结构域为ica69-pick1互动的一个重要结构域。[23]PICK1和ICA69作为胞浆脂结合蛋白,与形成不同成熟阶段胰岛素颗粒BAR结构域相关,是胰岛素颗粒的形成和成熟的关键调节因子[24-25],并且PICK1ICA69在TGN高尔基体外侧网络未成熟分泌小泡出芽中有决定性作用,从而GH的小泡储存和其他可能的激素起作用[38]

3.7 PICK1导致球形精子影响精子的形成过程

PICK1基因突变导致球形精子,一种在小鼠和人类中都有的男性不育疾病。PICK1在膜泡运输中是至关重要的,在精子细胞中缺乏PICK1会导致从高尔基体到顶体异常的囊泡运输。这最终会破坏精子顶体的形成导致男性不育。ICA1L与ICA69(也被称为ICA1)具有序列相似性,并且可以作为一种新的与PICK1结合的BAR域的结合物。ICA1L和PICK1在精子细胞中高表达,并且在不同阶段的精子形成过程中一起运输。[26]

3.8 PICK1是促进P2Y6受体在细胞膜上的表达

敲除 PICK1 能下调小胶质细胞膜上 P2Y6 受体的表达, 并降低小胶质细胞的吞噬功能,且这一过程依赖Akt磷酸化修饰这一结果可加深对小胶质细胞的吞噬功能及机制的认识 [27]

3.9 PICK1和GLT1b转运动力功能影响

PICK1的功能类似于靶向转运蛋白,将主体中PKCα的活性形式转运到棘中GluR2导致突触锚定蛋白中GluR2活动依赖性释放,也导致了突触膜中GluR2PICK1依赖性运输[28]。PICK1和GLT1b谷氨酸转运蛋白之间的相互作用影响转运动力功能[29]内质网介导的细胞内钙离子调节把GluA2运输出内质网[30-31]

3.10 PICK1可作镇痛作用新靶点

PICK1 抑制剂 FSC231 对化学刺激性疼痛炎症性疼痛以及神经源性疼痛 均具有明显镇痛作用,表明 PICK1 可作为镇痛作用的新靶点,而 PICK1抑制剂 FSC231 可作为镇痛作用的候选药物[32]

4. PICK1蛋白的其他作用

PICK1的功能存在于囊泡的生物合成中,不仅是维护正常的囊泡的数量和大小所必需的[33],也是一个关键的DHHC8基底,它的棕榈酰化是LTD长期突触抑制)必需的[34]同时PICK1的功能是结构和功能可塑性的重要因素。[32] GSK-糖原合酶激酶-3β调节GluA2-pick1之间的作用[35]RAB39Bis a member of the RAB family of small GTPases 小GTP酶类效应结合区与PICK1的PDZ结构域相互作用[36-37]

个人小结

作为非常有可能成为药靶蛋白的PICK1,它的结合能力非常广泛。多种疾病的预防、治疗、检测过程中,PICK1发挥不可忽视的作用。通过PDZ结构域上的配体C末端区域与其他很多种蛋白结合介导,完成了重要的作用PDZ结构域变成了功能多样的药物的潜在靶点。通过PDZ结构域的特异性结合,生物小分子干扰或阻断配体蛋白PICK1蛋白之间的一些天然相互作用。这样的方式为治疗相关疾病起到极其重要的作用并且能够同时达成指定的研究目标我们必须深入研究PICK1生物学功能,和小分子药物理化性质和结构构造中的设计最终是PICK1蛋白成为有效的、明确、可控的药物靶点。

参考文献

[1]. Karlsen, Morten , Thorsen, et al. Structure of Dimeric and Tetrameric Complexes of the BAR Domain Protein PICK1 Determined by Small-Angle X-Ray Scattering[J]. Structure, 2015, 23(7):1258-1270.Karlsen ML, Thorsen TS, Johner N, Ammendrup-Johnsen I, Erlendsson S, Tian X, Simonsen JB, Hoiberg-Nielsen R, Christensen NM, Khelashvili G, et al. Structure of Dimeric and Tetrameric Complexes of the BAR Domain Protein PICK1 Determined by Small-Angle X-Ray Scattering. Structure. 2015; 23:1258–1270. [PubMed: 26073603]

[2]. Erlendsson S, Arleth L, Madsen K L. Response to The Challenges of Polydisperse SAXS Data Analysis: Two Different SAXS Studies of PICK1 Produce Different Structural Models.[J]. Structure, 2015, 23(11):1969-1970.

[3]. He Y, Liwo A, Weinstein H, et al. PDZ binding to the BAR domain of PICK1 is elucidated by coarse-grained molecular dynamics.[J]. Journal of Molecular Biology, 2011, 405(1):298.

[4]. Nakamura Y, Wood C L, Patton A P, et al. PICK1 inhibition of the Arp2/3 complex controls dendritic spine size and synaptic plasticity.[J]. Embo Journal, 2011, 30(4):719-730.

[5]. Staudinger J, Zhou J, Burgess R, et al. PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system.[J]. Journal of Cell Biology, 1995, 128(3):263.

[6]. 冯永, 乔木, 卢宇婷,. PICK1蛋白83位点氨基酸对PDZ结构域的影响[J]. 浙江大学学报(医学版), 2012, 41(2):153-158.

[7]. Zhao B, Wang Q, Du J,. PICK1 promotes caveolin-dependent degradation of TGF-β type I receptor[J]. Cell Research, 2012, 22(10):1467-1478.

[8]. Hirbec H, Francis J C, Lauri S E, et al. Rapid and differential regulation of AMPA and kainate receptors at hippocampal mossy fibre synapses by PICK1 and GRIP.[J]. Neuron, 2003, 37(4):625.

[9]. Focant M C, Goursaud S, Boucherie C, et al. PICK1 expression in reactive astrocytes within the spinal cord of amyotrophic lateral sclerosis (ALS) rats.[J]. Neuropathology & Applied Neurobiology, 2013, 39(3):231–242.

[10]. Dixon R M, Mellor J R, Hanley J G. Pick1[J]. Journal of Biological Chemistry, 2009, 284(21):14230-14235.

[11]. Xu J, Wang N, Luo J H, et al. Syntabulin regulates the trafficking of PICK1-containing vesicles in neurons[J]. Scientific Reports, 2016, 6(4):20924.

[12]. Höhne M, Lorscheider J, Von B A, et al. The BAR domain protein PICK1 regulates cell recognition and morphogenesis by interacting with Neph proteins.[J]. Molecular & Cellular Biology, 2011, 31(16):3241.

[13]. Anna A, Marcio B, Nicholas C, et al. PICK1 links Argonaute 2 to endosomes in neuronal dendrites and regulates miRNA activity[J]. Embo Reports, 2014, 15(5):548–556.

[14]. Rocca D L, Hanley J G. PICK1 links AMPA receptor stimulation to Cdc42[J]. Neuroscience Letters, 2015, 585:155-9.

[15]. Murk K, Blanco Suarez E M, Cockbill L M, et al. The antagonistic modulation of Arp2/3 activity by N-WASP, WAVE2 and PICK1 defines dynamic changes in astrocyte morphology.[J]. Journal of Cell Science, 2013, 126(17):3873-83.

[16]. Anggono V, Koçschmitz Y, Widagdo J, et al. PICK1 interacts with PACSIN to regulate AMPA receptor internalization and cerebellar long-term depression.[J]. Proceedings of the National Academy of Sciences, 2013, 110(34):13976-13981.

[17]. 贾原, 黄玉民, 刘俊林,. PICK1蛋白C端酸性区域对其功能的调节[J]. 中国生物化学与分子生物学报, 2010, 26(3):224-230.

[18]. Rocca D L, Amici M, Antoniou A, et al. The small GTPase Arf1 modulates Arp2/3-mediated actin polymerization via PICK1 to regulate synaptic plasticity.[J]. Neuron, 2013, 79(2):293-307.

[19]. Nakamura Y, Wood C L, Patton A P, et al. PICK1 inhibition of the Arp2/3 complex controls dendritic spine size and synaptic plasticity.[J]. Embo Journal, 2011, 30(4):719-730.

[20]. 宋婀莉, 高友鹤. PICK1:一个功能多样的药靶蛋白[J]. 中国生物化学与分子生物学报, 2007, 23(9):697-705.

[21]. 冯延琼, 李爱平, 支海娟,. 款冬提取物对PICK1蛋白功能的影响[J]. 山西大学学报自然科学版, 2013, 36(3):455-459.

[22]. Xu J, Kam C, Luo J H, et al. PICK1 Mediates Synaptic Recruitment of AMPA Receptors at Neurexin-Induced Postsynaptic Sites.[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 2014, 34(46):15415-24.

[23]. Wang Z. C-terminal domain of ICA69 interacts with PICK1 and acts on trafficking of PICK1-PKCα complex and cerebellar plasticity.[J]. Plos One, 2013, 8(12):e83862.

[24]. Mian C, Zhuo M, Chuen K, et al. PICK1 and ICA69 control insulin granule trafficking and their deficiencies lead to impaired glucose tolerance.[J]. Plos Biology, 2013, 11(4):e1001541.

[25]. Mian C, Zhuo M, Chuen K, et al. PICK1 and ICA69 control insulin granule trafficking and their deficiencies lead to impaired glucose tolerance.[J]. Plos Biology, 2013, 11(4):e1001541.

[26]. Jing H, Mengying X, Wai Hung T, et al. ICA1L forms BAR-domain complexes with PICK1 and is crucial for acrosome formation in spermiogenesis.[J]. Journal of Cell Science, 2015, 128(20):3822-36.

[27]. 朱佳, 徐水凌, 蒋小红. 膜周蛋白PICK1促进细胞膜上P2Y6受体表达及小胶质细胞的吞噬功能[J]. 中国生物化学与分子生物学报, 2016, 32(7):783-789.

[28]. Perez J L, Khatri L, Chang C, et al. PICK1 targets activated protein kinase Calpha to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2.[J]. Journal of Neuroscience, 2001, 21(15):5417-5428.

[29]. Sogaard R, Borre L, Braunstein T H, et al. Functional modulation of the glutamate transporter variant GLT1b by the PDZ domain protein PICK1.[J]. Journal of Biological Chemistry, 2013, 288(28):20195.

[30]. Lee Y, Lee H, Kim H W, et al. Altered trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) in the striatum leads to behavioral changes in emotional responses.[J]. Neuroscience Letters, 2014, 584C:103-108.

[31]. Jaafari N, Henley J M, Hanley J G. PICK1 mediates transient synaptic expression of GluA2-lacking AMPA receptors during glycine-induced AMPA receptor trafficking.[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 2012, 32(34):11618-11630.

[32]. PICK1抑制剂FSC231的镇痛作用研究[J]. 中国生化药物杂志, 2014, 34(8):5.

[33]. Pinheiro P S, Jansen A M, De W H, et al. The BAR domain protein PICK1 controls vesicle number and size in adrenal chromaffin cells.[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 2014, 34(32):10688.

[34]. Thomas G M, Hayashi T, Huganir R L, et al. DHHC8-Dependent PICK1 Palmitoylation is Required for Induction of Cerebellar Long-Term Synaptic Depression[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 2013, 33(39):15401-15407.

[35]. Yagishita S, Murayama M, Ebihara T, et al. Glycogen Synthase Kinase-3β-mediated Phosphorylation in the Most C-terminal Region of Protein Interacting with C Kinase 1 (PICK1) Regulates the Binding of PICK1 to Glutamate Receptor Subunit GluA2.[J]. Journal of Biological Chemistry, 2015, 290(49):29438-48.Rocca D L, Amici M, Antoniou A, et al. The small GTPase Arf1 modulates Arp2/3-mediated actin polymerization via PICK1 to regulate synaptic plasticity.[J]. Neuron, 2013, 79(2):293-307.

[36]. Mignogna M L. The intellectual disability protein RAB39B selectively regulates GluA2 trafficking to determine synaptic AMPAR composition[J]. Nature Communications, 2015, 6:6504.

[37]. Holst B, Madsen K L, Jansen A M, et al. PICK1 Deficiency Impairs Secretory Vesicle Biogenesis and Leads to Growth Retardation and Decreased Glucose Tolerance[J]. Plos Biology, 2013, 11(4):e1001542.

本文来源:https://www.2haoxitong.net/k/doc/5544c93cfe00bed5b9f3f90f76c66137ee064f94.html

《pick1蛋白 周伟驰.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式