高三生物教案2010届高三生物一轮复习《遗传的基本规律(包括伴性遗传、细胞质遗传)》教案

发布时间:2011-01-28 11:28:46   来源:文档文库   
字号:

专题十一:遗传的基本规律包括伴性遗传、细胞质遗传)

1考点解读

一、考点盘点

二、考点解读

本单元的知识有一定的难度,因此在高考中常作为押轴题,从而达到高考区分、选拔的目的。现按知识点将其做如下解读:

分离定律是其他定律的基础。掌握分离定律必须联系减数分裂过程中同源染色体的分离,位于同源染色体上的等位基因也随之分离这一细胞学基础,并联系两性配子的结合使子代有杂合子和纯合子之分。此基础上不难理解杂合子第一代自交后代的基因型分离比为121,性状分离比是31(完全显性),而其根本原因是F1的配子分离比是11。注意复等位基因的现象如ABO血型的遗传。在高考中还经常考查基因分离定律的验证,以及应用测交实验判断某个生物个体的基因型。

理解自由组合定律的实质:位于非同源染色体上的非等位基因的分离或组合是互不干扰的。在减数分裂形成配子的过程中,同源染色体上的等位基因分离的同时,非同源染色体上的非等位基因自由组合。分离是组合的基础,习惯用分离比的各项数据(基因型和表现型的概率),用分枝法计算各种组合(基因型和表型)的概率。善于应用分离定律和自由组合定律进行家系遗传图谱的分析。理解孟德尔杂交实验及其总结得出遗传规律的科学推理过程。

理解性别的方式多种多样,但主要是性染色性决定;决定方式有XY型和ZW型两种。某些性状伴随性别遗传,实际上性别遗传遵循的是分离定律,可以把性别作为特殊的性状看待,一切问题就变得简单了。某些遗传病的家庭图的分析题,其中大部分涉及伴性遗传病,只要按一般的遗传规律进行分析即可解。对于患病概率的计算看起来难,实际上并不难,只要牢记一些基本规律(例如:只患一种病的概率=患甲不患乙+患乙不患甲),很容易得分。在高考中还经常出现基因位置的判断(例如:断控制某对性状的基因是位于常染色体还是位于X染色体),需要平时多总结一些基本规律,多解答一些题,总而言之,熟能生巧。

细胞质遗传有别于细胞核遗传,主要是因为遗传物质储存的场所不同。在复习时我们一定要把握本质,深入理解细胞质遗传特点的实质。要结合图来加深理解。

2、知识网络

3、本单元分课时复习方案

一、基因的分离定律

遗传规律:是指在有性生殖过程中,基因在亲代与子代之间传递规律。

基因和它的行为变化无法直接观察,而基因控制的性状在亲子代中的表现可以直接观察;因此,可根据性状表现来推知基因的遗传规律。

研究性状传递规律的方法——杂交实验法杂交的方法:杂交;自交;测交。

一、人物介绍 孟德尔——豌豆杂交试验

二、一对相对性状的遗传试验

过程:纯种高茎和矮茎豌豆作亲本杂交,再让F1自交得F2

特点:F1只表现显性亲本性状F2中显隐性同时出现叫性状分离,分离比为显:隐=3:1

三、对分离现象的解释

在生物的体细胞中,控制性状的基因成对存在,如纯种高茎豌豆含DD基因,纯种矮茎豌豆含dd基因;

杂交产生的F1体细胞中,Dd的配子结合成Dd。因Dd有显性作用,故F1显高茎;F1通过减裂产生配子时,Dd随同源染色体的分离而分离,最终产生含Dd的两种雌雄配子,比例1:1(等位基因分离)

两种雌配子与两种雄配子结合机会均等,因此,F2便有了DDDddd三种基因组合,它们之间的比例近于1:2:1,在性状表现上则近于高3:1(配子随机结合)。等位基因分离雌雄配子随机结合→F2性状分离

四、性状分离比的模拟实验

理论基础:模拟形成配子时等位基因的分离模拟两种雌雄配子的随机结合模拟样本足够大。

五、对分离现象解释的验证测交(还可用自交法,花粉鉴定法等)

六、基因分离定律的实质:基础为(等位基因)独立性;本质为(等位基因)分离性

该定律适用于真核生物有性生殖的生物细胞核遗传一对相对性状的遗传。

等位基因的存在:它们虽然共同存在于一个细胞内,但它们分别位于一对同源染色体上,具有一定的独立性。

在生物的体细胞中,控制性状的基因都是成对存在的,这里所说的生物指哪种生物?

同源染色体上相同位置上的基因一定是等位基因吗?

一对同源染色体上只能有一对等位基因吗?

基因分离与性状分离比较:性状分离是杂种后代(F2)中显现不同性状的现象;基因分离是指(F1形成配子时)等位基因在减后期随同源染色体的分开而分离。基因分离是性状分离的原因,性状分离是基因分离的结果。

配子结合的概率:受精时,雌雄配子结合机会均等,F2才会出现三种基因型、两种表现型。

七、基因分离定律在理论及实践中的应用

育种方面:培育抗锈病小麦等。医学实践方面:遗传病:白化病等。血型。解释生物多样性的原因。

八、有关遗传定律的概念及符号归类

交配类

杂交:基因型不同的生物体间相互交配的过程。

自交:基因型相同的生物体间相互交配;植物体中指自花受粉和雌雄异花的同株受粉。是获得纯系的有效方法。

测交:就是让杂种子一代与隐性个体相交,用以测定F1的基因型。

回交:让杂种子一代与亲本杂交。

去雄:杂交试验时,除去成熟花的全部雄蕊,是杂交试验的重要环节。

性状类

性状:生物体的形态特征和生理特征的总称。

相对性状:同种生物同一性状的不同表现类型。

显性性状:具有相对性状的亲本杂交,F1表现出来的那个亲本性状。

隐性性状:具有相对性状的亲本杂交,F1未表现出来的那个亲本性状。

性状分离:杂种的自交后代中,呈现不同性状的现象。

显性的相对性:具有相对性状的亲本杂交,F1中不分显性和隐性,同时表现出来,即两者的中间性状。

基因类

等位基因:同源染色体的相同位置、控制相对发性状的基因(等位基因A.a最本质的区别是:碱基序列不同)

显性基因:控制显性性状的基因。

隐性基因:控制隐性性状的基因。

相同基因:位于同源染色体同一位置上控制同一性状的基因。

非等位基因:位于同源染色体的不同位置或非同源染色体上的基因。

复等位基因:一系列等位基因的总体。

个体类

表现型:是指生物个体所表现出来的性状。

基因型:是指与表现型有关系的基因组成,表示为:表现型=基因型环境

表现型相同,基因型一定相同吗?基因型相同,表现型一定相同吗?

纯合体:是由含有相同基因的配子结合成的合子发育而成的个体。

杂合体:是由含有不同基因的配子结合成的合子发育而成的个体。

父本:相交的两个亲本中提供雄性配子的一方。

母本:相交的两个亲本中接受雄性配子(提供雌性配子)的一方。

符号类

P:亲本:雌性:雄性×:杂交⒌⊕:自交F1:子一代

九、本节有关习题的解题规律

一对等位基因的杂合体自交n代后杂合体所占比例为1/2n;若自交过程中每一代淘汰掉隐性纯合体,则n代后杂合体所占比例为2/(2n+1)

基因型(表现型)的每一特定组合的概率计算公式:n!psqn-s/s!(n-s)!n是子代数目;s是某一基因型(表现型)的子代数,p是该基因型(表现型)的出现概率;n-s是另一基因型(表现型)的出现概率。

遗传比率的决定主要根据概率的两个基本原理。乘法原理:相互独立事件同时出现的率为各独立事件率的乘积。加法原理:互斥事件有关的事件出现的率等于各相关互斥事件的率的和。可表示为:甲发生的×乙不发生的率+乙发生的×甲不发生的

十、常见问题解题方法

1)如后代性状分离比为显:隐=3 1,则双亲一定都是杂合子(Dd

Dd×Dd 3D_1dd

2)若后代性状分离比为显:隐=1 1,则双亲一定是测交类型。

即为Dd×dd 1Dd 1dd

3)若后代性状只有显性性状,则双亲至少有一方为显性纯合子。

DD×DD DD×Dd DD×dd

十一、杂合子和纯合子的鉴别方法:(判断某显性性状的个体的基因型)

若后代无性状分离,则待测个体为纯合子

测交法

(植物,动物) 若后代有性状分离,则待测个体为杂合子

若后代无性状分离,则待测个体为纯合子

自交法

(雌雄同花的植物,最简便) 若后代有性状分离,则待测个体为杂合子

二、基因的自由组合定律

一、孟德尔的两对相对性状的遗传试验

㈠方法:杂交法

过程:P 黄色圆粒×绿色皱粒→F1 黄色圆粒→F 黄色圆粒:绿色圆粒:黄色皱粒:绿色皱粒=9331

该过程产生变异了吗?

二、对自由组合现象的解释

黄和绿是一对相对性状,圆和皱是另一对相对性状。且两对相对性状分别由两对同源染色体上的两对等位基因控制;

两亲本基因型分别为YYRRyyrr分别产生YRyr的配子;

杂交产生的F1基因型是YyRr,表现为黄圆;

F1产生配子时,等位基因随同源染色体的分离而分离,非等位基因随非同源染色体的自由组合而自由组合进入不同配子中,结果产生比值相等的雌、雄各四种配子;

F2形成16种配子结合方式,有9种基因型,4种表现型。

AB 9(在最大三角形的三个角和三条边上)

Abb 3(在第二个三角形的三个角上)

aaB 3(在第三个三角形的三个角上)

aabb 1(在最小三角形内)

其中:Aaa=31;Bbb=31(符合分离定律)

另外:纯合体就在四个直角三角形的直角顶点上。

三、对自由组合现象解释的验证

杂种子一代×隐性纯合→YyRrYyrryyRryyrr1111

四、基因自由组合定律的实质

该定律适用于:两对或以上相对性状遗传;2控制两对或以上相对性状的等位基因位于不同对的同源染色体上。

等位基因分离、非同源染色体上的非等位基因自由组合雌雄配子自由组合不同对相对性状间自由组合。

受精时雌、雄配子随机结合才会出现不同性状及一定比。

具有两对(或更多对)相对性状的亲本进行杂交,在F1产生配子时,在等位基因分离的同时,非等位基因一定表现为自由组合吗?

一对具有20对等位基因的生物进行杂交时,F2可能出现220种表现型的前提条件是什么?

五、基因自由组合定律在实践中的应用

在育种中的应用。在医学和优生优育中的应用。

六、孟德尔获得成功的原因

正确地选择了试验材料;在分析生物性状时,采用了先从一对相对性状入手,再循序渐进的方法(由单一因素到多因素的研究方法)在实验中注意对不同世代的不同性状进行记载和分析,并运用了统计学的方法处理实验结果;科学设计了试验程序(试验分析假设验证结论)

七、本节有关习题的解题规律

杂交后代基因型和表现型概率的推算(F1YyRr)棋盘法;分枝法;多项式相乘法;如基因型:(1YY+2Yy+1yy)×(1RR+2Rr+1rr)=1YYRR:2YYRr:1YYrr:2YyRR:4YyRr:2Yyrr:1yyRR:2yyRr:1yyrr

表现型:(3+1绿)×( 3+1)=9黄圆:3绿圆:3黄皱:1绿皱

概率直接相乘法。如基因型:雌配子¼YR、雄配子½YR,则后代YYRR1/8

由表现型推基因型时:把相对性状拆开一对一对分别加以考虑,再进行综合,即可求出双亲的基因型。

(三)常见组合问题

1)配子类型问题

如:AaBbCc产生的配子种类数为2x2x2=8

2)基因型类型

如:AaBbCc×AaBBCc,后代基因型数为多少?

先分解为三个分离定律:

Aa×Aa后代3种基因型(1AA2Aa1aa

Bb×BB后代2种基因型(1BB1Bb

Cc×Cc后代3种基因型(1CC 2Cc1cc

所以其杂交后代有3x2x3=18种类型。

3)表现类型问题

如:AaBbCc×AabbCc,后代表现数为多少?

先分解为三个分离定律:

Aa×Aa后代2种表现型

Bb×bb后代2种表现型

Cc×Cc后代2种表现型

所以其杂交后代有2x2x2=8种表现型。

5YyRr产生配子的类型

三、 性别决定和伴性遗传

一、性别决定

在人的染色体分组图中,男、女性前22对染色体都相同,叫常染色体;最后一对染色体不同,叫性染色体。

性染色体:对人的性别起着决定作用的那一对染色体叫性染色体。XY虽然大小形状不同,但X来自母方,Y来自父方,且减数分裂时也要经历配对和分开的过程,因此XY也可视为一对同源染色体。

人的性别决定:根据基因分离定律,男性会形成数目相等的两种精子,女性会形成一种卵细胞受精时精卵随机结合。XY型与ZW型生物比较

二、伴性遗传

概念:有些性状的遗传常常与性别相关联,这种现象就是伴性遗传。

特点:交叉遗传。

与遗传定律的关系伴性遗传是基因分离定律的特例(XY的非同源区段无等位基因)在既有性染色体又有常染色体上的基因控制的两对以上相对性状的遗传现象时,按照基因自由组合定律遗传。

常染色体遗传与伴性遗传的区别:常染色体遗传正反交结果一致,伴性遗传正反交结果不一致,但又不同于细胞质遗传。

三、关于后代中出现患病男孩和女孩的机率问题

常染色体上的基因控制的遗传病:性别在前,病名在后,推测出双亲基因型后可直接作图解病名在前,性别在后,求出患病孩子的机率后乘以1/2

性染色体上的基因控制的遗传病:病名在前,性别在后,推测出双亲基因型后可直接作图解性别在前,病名在后,只从图解的相应性别中去找患者的机率。

四、细胞质遗传

一、细胞质遗传的特点

典型实例:紫茉莉质体的遗传

紫茉莉的叶片中有两种类型质体即:

叶绿体:含有叶绿素、呈绿色

紫茉莉的质体

白色体:无色素、白色

而紫茉莉的枝条有三种:绿色、白色、花斑色(绿、白相间),它们所含有的质体如下:

柯伦斯经过多年的杂交实验,结果如教材P4331,其中接受花粉的枝条是母本,提供花粉的枝条是父本,由表中所列结果可以发现这样的规律:无论父本是何种性状,F1总是表现出母本的性状,我们把这样的遗传现象称为母系遗传,也有学者称为偏母遗传。

此后的许多学者在其他生物的杂交实验中,也发现了类似现象。如藏报春、玉米、棉花、天竺葵、菜豆的叶绿体遗传;水稻、高粱的雄性不育遗传以及微生物中的链孢霉线粒体遗传。二、母系遗传的细胞学基础

  我们知道在卵细胞中含有大量的来自母方的细胞质,而精子中只含有响晴的来自父方的细胞质,在受精时,精子只是其细胞核部分进入了卵细胞中,而来自父方的细胞质很少甚至不能进入卵细胞。因此,由受精卵发育成的F1,其细胞质中的遗传物质几乎全部来自母方,所以在F1中,受细胞质内遗传物质控制的性状遗传――细胞质遗传总是表现妯母本的性状,即母系遗传。

三、母系遗传的特点(与核遗传的区别)

第一, F1表现为母系遗传,即正反交的结果不一样;

第二, 杂交后代的表现类型无一定的分离比例(这是由于减数分裂产生生殖细胞时,细胞质中的遗传物质是随机地不均等地分配到生殖细胞中,同时,受精卵在有丝分裂形成新个体时,细胞质也是不均等分裂)。

 杂交过程如下图:

受精 受精

由上图可见:亲本产生配子时,细胞核遗传物质均等分配,而细胞质中遗传物质则不均等分配,在F1中,细胞核遗传物质一半来自父方,一半来自母方,所以正反交结果一样;细胞质的遗传物质则来自母方,所以正反交结果就不一样。

1.孟德尔遗传规律的适用条件及限制因素

1)适用条件

①真核生物的性状遗传。原核生物和非细胞结构的生物(如病毒)无染色体,不进行减数分裂。

②有性生殖过程中的性状遗传,只有在有性生殖过程中才发生等位基因分离,以及非同源染色体上的非等位基因的自由组合。

③细胞核遗传。只有真核生物的细胞核内基因随染色体的规律性变化而呈现规律性传递。

④基因的分离定律适用与一对相对性状的遗传,只涉及一对等位基因。基因的自由组合定律适用于两对或两对以上相对性状的遗传,涉及两对或两对以上的等位基因且分别位于两对或两对以上的同源染色体上。

2)限制因素

基因的分离定律和自由组合定律的F1F2要表现特定的分离比应具备的条件:

①所研究的每一对性状只受一对等位基因控制,而且等位基因要完全显性。

②不同类型的雌、雄配子都能发育良好,且受精的机会均等。

③所有后代都处于比较一致的环境中,而且存活率相同。

④共实验的群体要大,个体数量要足够多。

2.基因分离定律中的解题思路

分离定律的习题主要有两类:一类是正推类型,即已知双亲的基因型或表现型,推后代的基因型或表现型及比例,此类型比较简单。二是逆推类型,即根据后代的表现型或基因型推双亲的基因型,这类题最多见也较复杂,下面结合实例谈谈推导思路和方法。

1)方法一:隐性纯合突破法

例如:绵羊的白色由显性基因(B)控制,黑色由隐性基因(b)控制。现有一只白色公羊与一只白色母羊,生了一只黑色小羊。试问:公羊和母羊的基因型分别是什么?它们生的那只小羊又是什么基因型?

①根据题意列出遗传图式:

因为白色(B)为显性,黑色(b)为隐性。双亲为白羊,生下一只黑色小羊,有:

②从遗传图式中出现的隐性纯合子突破:

因为子代为黑色小羊,基因型必为bb,它是由精子和卵细胞受精后发育形成的,所以双亲中都有一个b基因,因此双亲基因型均为Bb

2)方法二:根据后代分离比解题

①若后代性状分离比为显性∶隐性=31,则双亲一定都是杂合子。即Bb×Bb 3B 1bb

②若后代性状分离比为显性∶隐性=11,则双亲一定是测交类型。即Bb×bb1Bb1bb

③若后代性状只有显性性状,则双亲至少有一方为显性纯合子。即BB×BBBBBB×Bb1BB1BbBB×bb1Bb

3.用分离定律解决自由组合定律问题

自由组合定律是以分离规律为基础的,因而可用分离定理的知识解决自由组合定律的问题,且用分离定律解决自由组合定律的问题显得简单易行。其基本策略是:

1)首先将自由组合问题转化为若干个分离定律问题。

在独立遗传的情况下,有几对基因就可以分解为几个分离定律问题。如AaBb×Aabb可分解为:Aa×AaBb×bb

2)用分离定律解决自由组合的不同类型的问题。

①配子类型的问题

例:某生物雄性个体的基因型为AaBbcc,这三对基因为独立遗传,则它产生的精子的种类有:

Aa Bb cc

2 × 2 × 1 4

②基因型类型的问题

例:AaBbCcAaBBCc杂交,其后代有多少种基因型?

先将问题分解为分离定律问题:

Aa×Aa 后代有3种基因型(1AA2Aa1aa);

Bb×BB 后代有2种基因型(1BB1Bb);

Cc×Cc 后代有3种基因型(1CC2Cc1cc)。

因而AaBbCcAaBBCc杂交,其后代有3×2×3 18种基因型。

③表现型类型的问题

例:AaBbCcAabbCc杂交,其后代有多少种表现型?

先将问题分解为分离定律问题:

Aa×Aa 后代有2种表现型;

Bb×BB 后代有2种表现型;

Cc×Cc 后代有2种表现型。

因而AaBbCcAabbCc杂交,其后代有2×2×2 8种表现型。

4.减数分裂与遗传基本规律间的关系

对于真核生物而言,减数分裂是遗传基本规律的基础,基因的分离定律、基因的自由组合定律都是减数分裂过程中,随着染色体的规律性变化,染色体上的基因亦随之进行规律变化的结果。

在减数分裂第次分裂过程中,联会的同源染色体的非姐妹染色单体之间对应片段的部分发生的交叉互换,结果会使每条染色体上都会有对方的染色体片段,这是基因互换的基础,后期,当同源染色体被纺锤蝗丝牵引移向两极时,位于同源染色体上的等位基因,也随着同源染色体分开而分离,分别进入到不同的子细胞,这是基因分离定律的基础,在等位基因分离的同时非同源染色体上的非等位基因随着非同源染色体的组合而自由组合,这是自由组合定律的基础。

5.伴性遗传——性染色体上基因的传递规律

1)伴Y染色体遗传特点

因为致病基因只在Y染色体上,没有显隐性之分,因而患者全为男性,女性全部正常。致病基因为父传子、子传孙,具有世代连续性,如人类的外耳道多毛症。

2)伴X染色体隐性遗传的特点

男性患者多于女性患者;具有隔代交叉遗传现象。女性患病,其父亲、儿子一定患病,其母亲、女儿至少为携带者;男性正常,其母亲、女儿一定正常。如人的红绿色盲。

3)伴X染色体显性遗传的特点

女性患者多于男性;具有连续遗传现象;男性患病,其母亲、女儿一定患病;女性正常,其父亲、儿子一定正常;女性患病,其父母至少有一方患病。如人的抗VD佝偻病。

4)对性染色体XY上既有同源部分,也有非同源部分。同源部分XY有相应的位点基因,这些基因的遗传与性别有关。非同源部分指的是X上有的基因,而Y上没有,Y上有的基因,而X上没有。

5)伴性遗传同样遵循孟德尔的遗传规律。

6.遗传系谱图的解题步骤

1)首先判断显隐性。

2)判断致病基因的位置,一般常用数学中的“反证法”。

3)根据系谱图中个体的表现型及亲子代关系推断每一个体可能的基因型。

4)根据题目设问,计算相关概率并回答相关问题。

7.显隐性性状的判断

1)显性性状的判断

④以上方法无法判断,可用假设法在运用假设法判断显性性状时,若出现假设与事实相符的情况,要注意两种性状同时做假设或对同一性状做两种假设,切不可只根据一种假设做出片面的结论。但若假设与事实不相符,则不必再做另一假设,可予以直接判断。

2)遗传方式判断

不同性状的亲本杂交→后代性状表现与性别无关联该性状遗传是常染色体遗传,若后代性状表现与性别相关联(如某一性状全为雌性或雄性等),则该性状遗传是伴性遗传。

8.概率求解范围的确认

1)在所有后代中求某种病的概率:不考虑性别,凡其后代都属求解范围。

2)只在某一性别中求某种病的概率:避开另一性别,只求所在性别中的概率。

3)连同性别一起求概率:此种情况性别本身也属求解范围,应先将该性别的出生率(1/2)列入范围,再在该性别中求概率。

伴性遗传与二大遗传定律的关系如果是一对等位基因控制一对相对性状的遗传,则符合分离定律。如果既有性染色体又有常染色体上的基因控制的两对相对性状的遗传,则遵循自由组合定律。

一、细胞核与细胞质遗传区别

二、细胞核与细胞质遗传联系

⒈生物体大部分性状是受核基因控制,核基因是主要的遗传物质,有些性状受质基因控制。⒉核遗传和质遗传各自都有相对的独立性。质基因也可以自我复制,可以控制蛋白质的合成。⒊核遗传与质遗传相互影响,很多情况是核质互作的结果。

细胞核遗传与细胞质遗传的比较

两个定律的比较

三、基因分离定律和基因的自由组合定律的区别

w.w.w.k.s.5.u.c.o.m

www.ks5u.com

本文来源:https://www.2haoxitong.net/k/doc/bf50a60d844769eae009ed80.html

《高三生物教案2010届高三生物一轮复习《遗传的基本规律(包括伴性遗传、细胞质遗传)》教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式